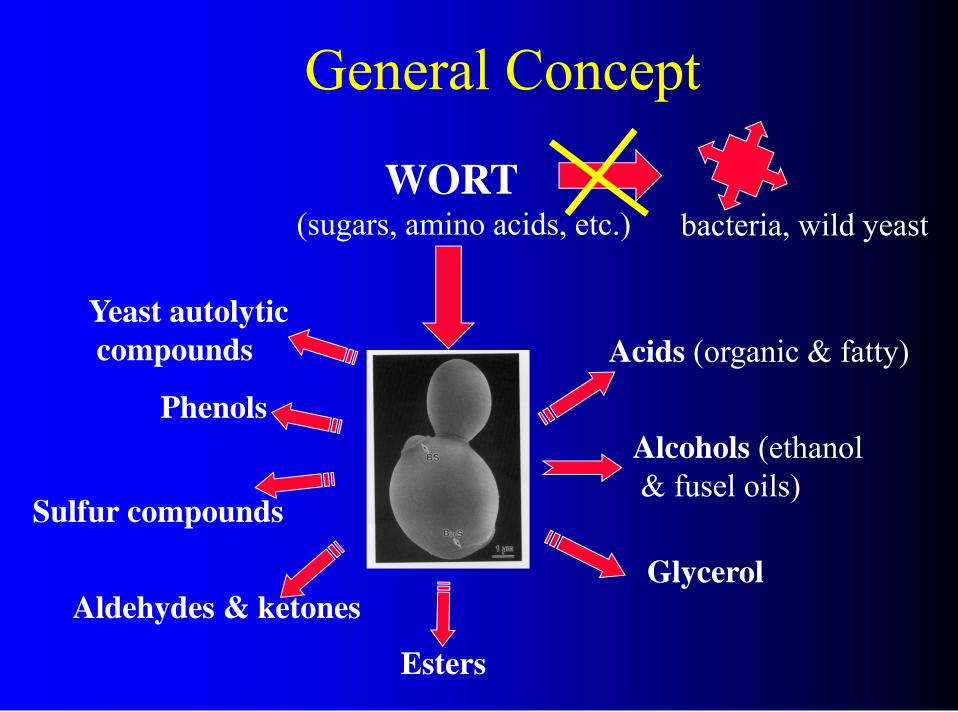


The Flavor is in the Fermentation

Lyn Kruger

President


Siebel Institute of Technology

Control of Fermentation Flavors

- What are the primary fermentation flavor compounds?
- How does yeast make them?
- What influences their production?
- How can they be controlled?

Why do we want to control Fermentation?

- Consumer expects a consistent quality product
- Flavor matching
- Production planning, utilization
- Efficiency

Examples of flavor-active compounds from yeast

eg. Acetic acid Acids eg. Ethanol Alcohols ✤ Esters eg. Ethyl acetate Aldehydes eg. Acetaldehyde ***** Ketones eg. Diacetyl S-Compounds eg. Hydrogen sulfide eg. 4-Vinyl guaiacol Phenolics

Typical flavor levels

Fermentation Product Levels

Ethanol, CO_2 , Glycerol g/l

Higher Alcohols, Organic acids Short chain fatty acids Aldehydes, SO_2 , Keto acids Acetoin, 2,3 Butanediol

 H_2S , diacetyl, DMS $\mu g/l$

mg/l

Flavor and taste of				
some by-products				
by-product	flavour and taste			
acetaldehyde	unripe apple			
ethyl-acetate	acetone, solvent			
i-amyl-acetate	fruity, banana			
n-propanol	alcohol			
iso-butanol	pharmacy			
i-amyl-alcohols	bitter			
phenylethanol	roses			
diacetyl	butter, honey			

Average concentration of some by-products

compound [mg/l]	variability	average
n-propanol	5 - 17	10
i-butanol	4 - 14	8
i-amylalcohols	34 - 73	55
2-phenylethanol	5 - 50	18
ethylacetate	9 - 35	20
isoamylacetate	0,4 - 3,1	1,4
acetaldehde	2 - 19	9
diacetyl	0,01 - 0,15	0,09
2,3-pentandione	0,01 - 0,35	0,04

Significant Fermentation Related Flavors

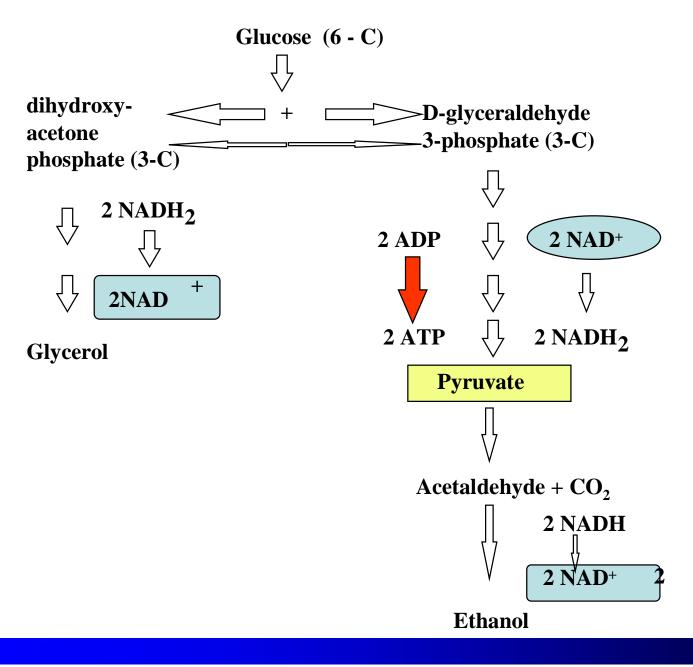
- Effect of fermentation variables on flavor components
 - Organic Acids
 - Fatty Acids
 - Acetaldehyde
 - Glycerol
 - Higher alcohols
 - Esters
 - Vicinal Diketones Diacetyl
 - Phenolics
 - Sulfur volatiles
 - Yeast autolysis

Fermentation Flavor Control Variables

- Yeast Strain
- Yeast Condition
- Wort Composition
- Temperature Profile
- Aeration
- Pitching

Acetaldehyde – Green Beer Flavour

- An important carbonyl is acetaldehyde; a normal intermediate product of fermentation
- Peaks during fermentation, then declines
- Formation occurs during the first three days of fermentation
- Intermediate from carbohydrate to ethanol production, 1.2 24.4 mg/l
- Zinc mediates conversion to ethanol
- Permanent reduction during post-fermentation and maturation by CO₂ washing (evaporation-volatile)
- Depends on yeast strain

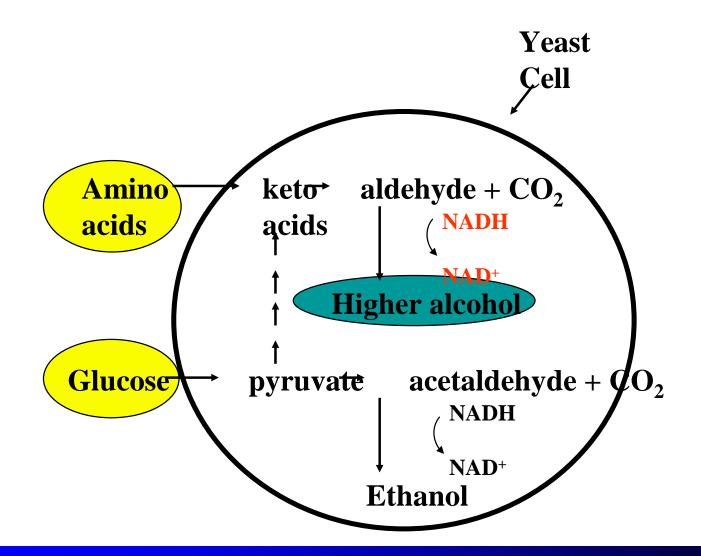

Acetaldehyde – Green Beer Flavour

- Concentration increases by:
 - intensive fermentation
 - high fermentation temperature
 - excessive aeration
 - stirred fermentations
 - high pitching rates
 - high pH
 - pressure during fermentation
 - can be complexed by sulfite
 - infection
- Concentration reduces by:
 - intensive post-fermentation and maturation
 - high yeast concentration during maturation

Glycerol Production by Yeast

Glycerol is quantitatively one of the most important products of yeast fermentation and contributes to the viscosity and "body" of beer (and wine).

Glycolysis


Higher Alcohol (fusel oil) More than 40 alcohols identified in beer!

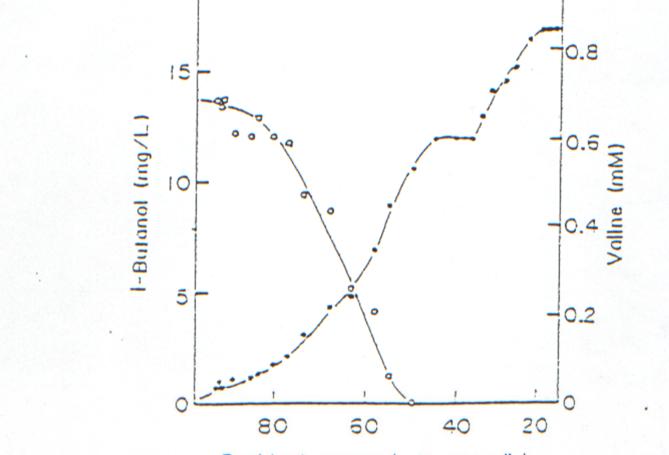
Compound	Threshold (mg/l)	Aroma or Taste	Bottom Fermentation	Top Fermentation
n-propanol	600 - 800	alcohol	7 - 9	20 - 45
iso-butanol	100 - 200	alcohol	4 - 20	10 - 24
2-methylbutanol	50 - 70	alcohol	9 - 25	80 - 140
3-methylbutanol	50 - 65	fusel, pungent	25 - 75	80 - 140
2-phenylethanol	5 - 75	rose, perfume	11 – 51	8 - 50
Tyrosol	10 - 20	bitter	6-15	8 - 22
Tryptophol	10 - 20	almonds	0.5 - 14	2 - 12

Higher Alcohol (fusel oil) Metabolism by Yeast

 Formed as a by-product of protein synthesis from keto-acids

HIGHER ALCOHOLS

Higher Alcohol (fusel oil) Metabolism by Yeast


♦ When amino acids are sufficient (early in fermentation) fusel oils originate from the CATABOLIC PATHWAY (Ehrlich pathway) amino acid → α-ketoacid → higher alcohol
♦ When amino acids are deficient (later in fermentation) they originate from the ANABOLIC PATHWAY from pyruvate

amino acid

carbohydrate \longrightarrow pyruvate $\longrightarrow \alpha$ -ketoacid

higher alcohols

Example: isobutanol production

Residual sugars (g Maltase/L)

Fig. 5. Valine consumption and isobutanol formation during stirred wort fermentation at 20°C. O: valine; •: isobutanol.

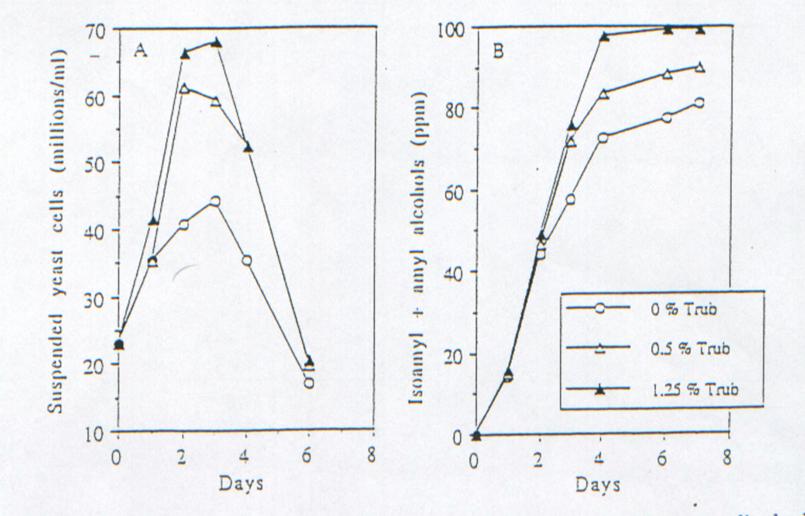
Factors effecting Fusel Alcohol production by yeast

Extent of yeast growth

 Conditions promoting yeast growth (increased O₂) result in increased fusel alcohol production

Higher alcohols

increased by


† Yeast Growth

- high fermentation temp
- stirring and pumping
- high concentration of amino-acids in wort, higher FAN utilization
- intensive aeration

reduced by

Yeast Growth

- high pitching rate
- cold pitching temperature and fermentation
- pressure during fermentation
- avoid oxygen after pitching

igure 7. Relationship between yeast growth (A) and isoamyl (+ amyl) alcohol synthesis (B) (from Sa Almeida et al., 1989).

Ester production by yeast

- Over 90 distinct esters in beer flowery and fruity flavours and aromas
- Desirable at low concentrations, but undesirable at high concentrations
- Important esters: ethyl acetate, isoamyl acetate,
- Produced by reaction of fatty acids with alcohols

Ethanol + acetyl CoA---->Ethyl acetate + CoA

Control

- Ester synthesis not that simple.
- No direct relationship between yeast growth and ester synthesis.
- The amount of ester formed will depend on :
- The amount of the acid (Acyl CoA compounds)
- The amount and activity of the enzyme (Acyl-alcohol transferase)
- The amount of the higher alcohol

Factors effecting Ester Production

- Yeast strain dependent
- Wort gravity higher °P, higher esters
- Fermentation temperature slightly increases fruity esters, high temperature increases floral esters
- Pitching rate low rates decrease esters (Quantitatively)
- * Oxygen low wort O_2 enhances esters
- Zinc promotes esters
- Fermenter pressure reduces yeast growth and esters

Esters

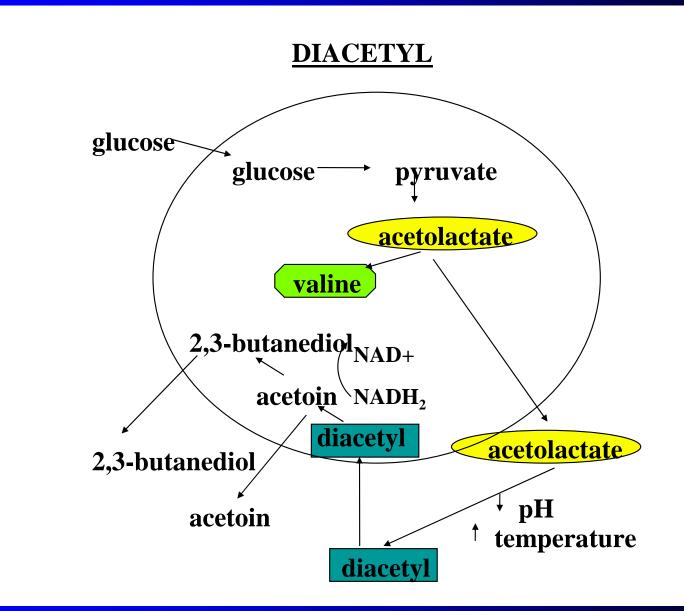
enhanced by

- yeast strain
- high gravity
- high fermentation degree
- low wort aeration

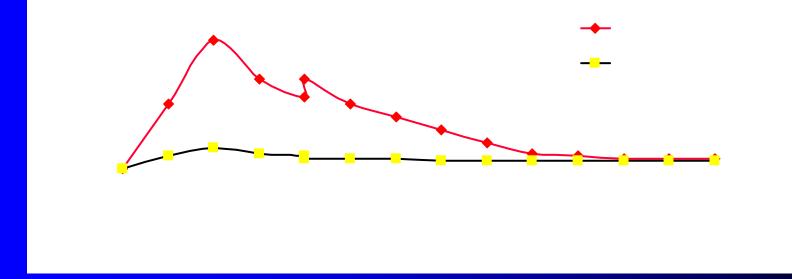
reduced by

- low wort concentration
- pressure during fermentation
- deep fermenters
- higher lipid content

Production of Carbonyls by Yeast


- Several carbonyls have important flavour effects on beer: eg. acetaldehyde (unripe apples) and diacetyl (rancid butter)
- Diacetyl (CH₃COCOCH₃) has a very low flavour threshold, 0.1ppm

A critical aspect of fermentation management and beer maturation is the control of diacetyl


Diacetyl

 VDK (butter) flavour
Diacetyl accounts for 80-90% of VDK flavor while remainder is from 2,3pentanedione

Development of Diacetyl

- during the first days of main fermentation the aceto-hydroxy-acids increase drastically
- uptake of oxygen increases content again
- during secondary fermentation, diacetyl steadily reduced

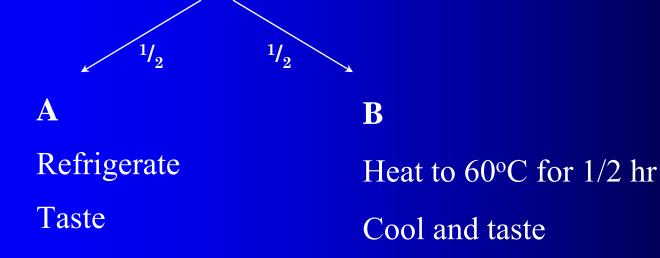
Reduction of Diacetyl Concentration

Reduced by

- low pH
- active yeast
- high yeast cell count
- low pressure
- low fermentation temperature and higher end fermentation temperatures
- long storage on yeast (i.e., diacetyl rest)

Some Strategies for Diacetyl Reduction

Fermentation temperature control


- Increased temperature half way through fermentation (speeds up diacetyl reduction)
- Traditional "lagering"

Diacetyl Diagnostic Test

Method :

Sample beer from the fermenter

Remove the yeast (filter through filter paper)

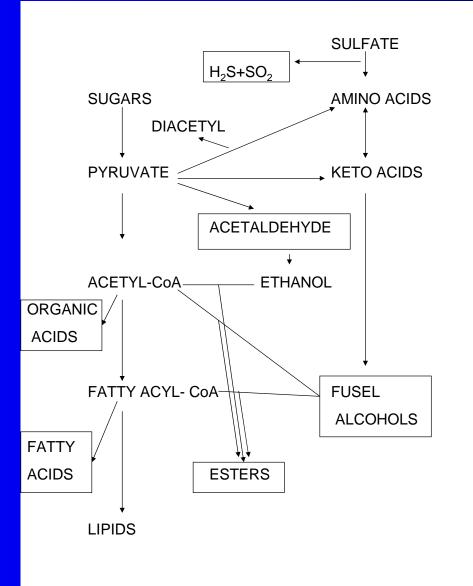
Diacetyl Diagnostics

Interpretation I

- A (no heat) tastes fine B (heated) tastes of diacetyl
- Precursor left in beer that will go to diacetyl over time (accelerated with heat)

Interpretation II

- A (no heat) tastes of diacetyl B (heated) tastes of diacetyl
- (Same intensity)
- Diacetyl left at end of fermentation

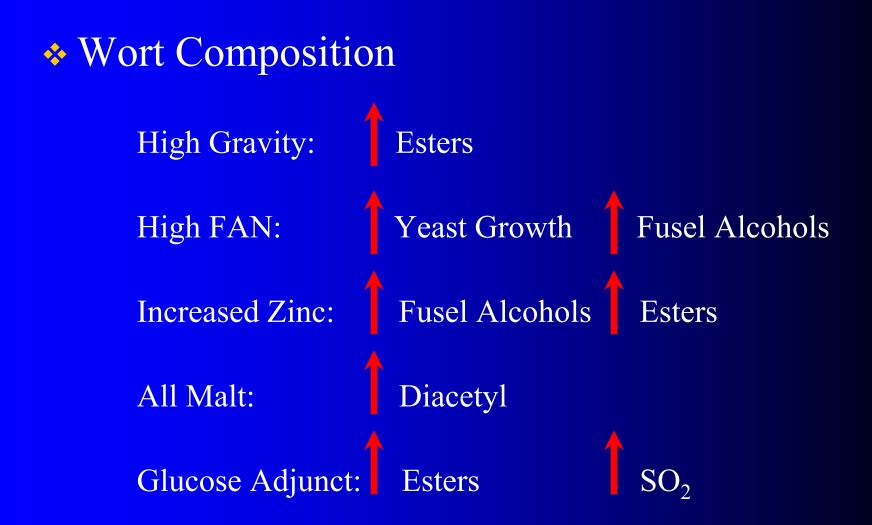

Interpretation III

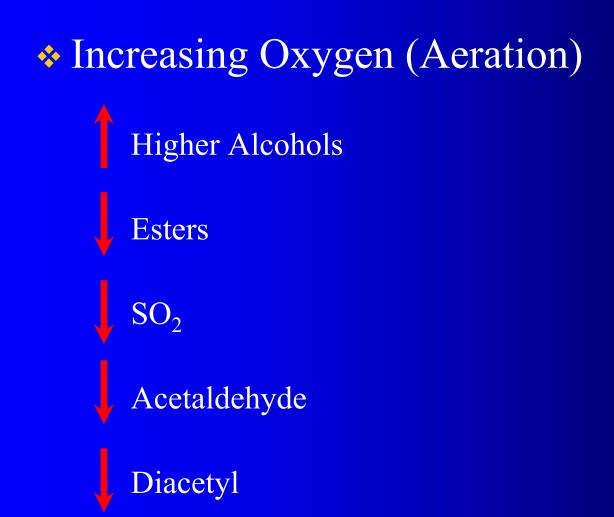
- A (no heat) tastes slight diacetyl B (heated) tastes strong diacetyl
- (**B** more intense than **A**)
- Diacetyl and precursor left at end of fermentation

Yeast Autolysis Flavors and Aromas

- Gives meat-like flavors and aromas, harsh bitterness
 - Yeast viability significantly decreases
 - Yeast releases proteases
 - pH increases
- ✤ Increased by:
 - Length of time beer sits on yeast
 - Temperature of yeast
- Timely remove settled yeast

Inter-relationships between yeast metabolism and formation of flavor-active compounds


Summary Control of Fermentation Flavors Important Factors


YEAST

- Strain
- Pitching rate and consistency
- Viability (autolytic "yeasty" flavours)
- Contaminants
- WORT

Gravity, pH, dissolved oxygen, contaminants, yeast foods
FERMENTATION

Design/geometry, temperature, pressure

Increasing Yeast Pitch Rate

Yeast Growth

Ethyl Acetate (solvent)

Iso-amyl Acetate (banana)

Higher Alcohols

Increasing Temperature

 SO_2

Acetaldehyde

Higher Alcohols

Floral, solvent Esters

Diacetyl (depending upon flocculation), but speeds reduction